If ${A_\lambda } = \left( {\begin{array}{*{20}{c}}
\lambda &{\lambda - 1}\\
{\lambda - 1}&\lambda
\end{array}} \right);\,\lambda \in N$ then $|A_1| + |A_2| + ..... + |A_{300}|$ is equal to
$(299)^2$
$(300)^2$
$(301)^2$
None of these
The values of $a$ and $b$, for which the system of equations $2 x+3 y+6 z=8$ ; $x+2 y+a z=5$ ; $3 x+5 y+9 z=b$ has no solution, are:
The greatest value of $c \in R$ for which the system of linear equations
$x - cy - cz = 0 \,\,;\,\, cx - y + cz = 0 \,\,;\,\, cx + cy - z = 0 $ has a non -trivial solution, is
Let $\lambda $ be a real number for which the system of linear equations $x + y + z = 6$
; $4x + \lambda y - \lambda z = \lambda - 2$ ; $3x + 2y -4z = -5$ Has indefinitely many solutions. Then $\lambda $ is a root of the quadratic equation
If the system of linear equations $2 x-3 y=\gamma+5$ ; $\alpha x+5 y=\beta+1$, where $\alpha, \beta, \gamma \in R$ has infinitely many solutions, then the value of $|9 \alpha+3 \beta+5 \gamma|$ is equal to
If $'a'$ is non real complex number for which system of equations $ax -a^2y + a^3z$ = $0$ , $-a^2x + a^3y + az$ = $0$ and $a^3x + ay -a^2z$ = $0$ has non trivial solutions, then $|a|$ is